Assignment 7.

1. It is given that $\int_1^a \ln(2x) dx = 1$, where a > 1. Show that $a = \frac{1}{2} \exp\left(1 + \frac{\ln 2}{a}\right)$, where $\exp(x)$ denotes e^x .

2. (a) Use the substitution $u = \tan x$ to show that, for $n \neq -1$,

$$\int_0^{\frac{1}{4}\pi} \left(\tan^{n+2} x + \tan^n x \right) \, \mathrm{d}x = \frac{1}{n+1}.$$

(b) Hence find the exact value of

i.
$$\int_0^{\frac{1}{4}\pi} \left(\sec^4 x - \sec^2 x\right) \, \mathrm{d}x,$$
 [3]

ii.
$$\int_{0}^{\frac{1}{4}\pi} \left(\tan^{9} x + 5 \tan^{7} x + 5 \tan^{5} x + \tan^{3} x \right) \, \mathrm{d}x.$$
 [3]

[4]

3. The diagram shows the curve $y = \sin^2 2x \cos x$ for $0 \le x \le \frac{1}{2}\pi$, and its maximum point M.

(a) Find the x-coordinate of M.

[6]

(b) Using the substitution $u = \sin x$, find by integration the area of the shaded region bounded by the curve and the x-axis. [4]

4. (†) Evaluate the integral $\int_{-1}^{1} \left| \frac{x}{x+2} \right| dx$

Total mark of this assignment: 26 + 7. The symbol (\dagger) indicates a bonus question. Finish other questions before working on this one. [7]