Assignment 7.

1. It is given that $\int_{1}^{a} \ln (2 x) \mathrm{d} x=1$, where $a>1$.

Show that $a=\frac{1}{2} \exp \left(1+\frac{\ln 2}{a}\right)$, where $\exp (x)$ denotes e^{x}.
2. (a) Use the substitution $u=\tan x$ to show that, for $n \neq-1$,

$$
\int_{0}^{\frac{1}{4} \pi}\left(\tan ^{n+2} x+\tan ^{n} x\right) \mathrm{d} x=\frac{1}{n+1} .
$$

(b) Hence find the exact value of
i. $\int_{0}^{\frac{1}{4} \pi}\left(\sec ^{4} x-\sec ^{2} x\right) d x$,
ii. $\int_{0}^{\frac{1}{4} \pi}\left(\tan ^{9} x+5 \tan ^{7} x+5 \tan ^{5} x+\tan ^{3} x\right) \mathrm{d} x$.
3. The diagram shows the curve $y=\sin ^{2} 2 x \cos x$ for $0 \leqslant x \leqslant \frac{1}{2} \pi$, and its maximum point M.

(a) Find the x-coordinate of M.
(b) Using the substitution $u=\sin x$, find by integration the area of the shaded region bounded by the curve and the x-axis.
4. (\dagger) Evaluate the integral $\int_{-1}^{1}\left|\frac{x}{x+2}\right| \mathrm{d} x$

Total mark of this assignment: $26+7$.
The symbol (\dagger) indicates a bonus question. Finish other questions before working on this one.

